

Laravel:	Up	and	Running
A	Framework	for	Building	Modern	PHP	Apps

Matt	Stauffer

Laravel:	Up	and	Running
by	Matt	Stauffer

Copyright	©	2017	Matt	Stauffer.	All	rights	reserved.

Printed	in	the	United	States	of	America.

Published	by	O’Reilly	Media,	Inc.,	1005	Gravenstein	Highway	North,	Sebastopol,	CA	95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional	use.	Online
editions	are	also	available	for	most	titles	(http://oreilly.com/safari).	For	more	information,	contact
our	corporate/institutional	sales	department:	800-998-9938	or	corporate@oreilly.com.

Editor:	Allyson	MacDonald

Production	Editor:	Colleen	Lobner

Copyeditor:	Rachel	Head

Proofreader:	Kim	Cofer

Indexer:	Angela	Howard

Interior	Designer:	David	Futato

Cover	Designer:	Randy	Comer

Illustrator:	Rebecca	Demarest

December	2016:	First	Edition

http://oreilly.com/safari

Revision	History	for	the	First	Edition
2016-11-14:	First	Release

See	http://oreilly.com/catalog/errata.csp?isbn=9781491936085	for	release	details.

The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.	Laravel:	Up	and	Running,	the
cover	image	of	a	gemsbok,	and	related	trade	dress	are	trademarks	of	O’Reilly	Media,	Inc.

While	the	publisher	and	the	author	have	used	good	faith	efforts	to	ensure	that	the	information	and
instructions	contained	in	this	work	are	accurate,	the	publisher	and	the	author	disclaim	all
responsibility	for	errors	or	omissions,	including	without	limitation	responsibility	for	damages
resulting	from	the	use	of	or	reliance	on	this	work.	Use	of	the	information	and	instructions	contained
in	this	work	is	at	your	own	risk.	If	any	code	samples	or	other	technology	this	work	contains	or
describes	is	subject	to	open	source	licenses	or	the	intellectual	property	rights	of	others,	it	is	your
responsibility	to	ensure	that	your	use	thereof	complies	with	such	licenses	and/or	rights.

978-1-491-93608-5

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781491936085

Dedication
This	book	is	dedicated	to	my	gracious	and	inspiring	wife,	Tereva,	my	joyful	and	courageous	son,
Malachi,	and	my	beautiful	daughter,	Mia,	who	spent	the	majority	of	this	book’s	creation	in	her
mama’s	belly.

Preface

The	story	of	how	I	got	started	with	Laravel	is	a	common	one:	I	had	written	PHP	for	years,	but	I	was
on	my	way	out	the	door,	pursuing	the	power	of	Rails	and	other	modern	web	frameworks.	Rails	in
particular	had	a	lively	community,	a	perfect	combination	of	opinionated	defaults	and	flexibility,	and
the	power	of	Ruby	Gems	to	leverage	prepackaged	common	code.

Something	kept	me	from	jumping	ship,	and	I	was	glad	for	that	when	I	found	Laravel.	It	offered
everything	I	was	drawn	to	in	Rails,	but	it	wasn’t	just	a	Rails	clone;	this	was	an	innovative	framework
with	incredible	documentation,	a	welcoming	community,	and	clear	influences	from	many	languages
and	frameworks.

Since	that	day	I’ve	been	able	to	share	my	journey	of	learning	Laravel	through	blogging	and	speaking
at	conferences;	I’ve	written	dozens	of	apps	in	Laravel	for	side	and	work	projects,	and	I’ve	met
thousands	of	Laravel	developers	online	and	in	person.	I	have	plenty	of	tools	in	my	toolkit	at	our
consultancy,	but	I	am	honestly	happiest	when	I	sit	down	in	front	of	a	command	line	and	type	laravel
new	project.

What	This	Book	Is	About
This	is	not	the	first	book	about	Laravel,	and	it	won’t	be	the	last.	I	don’t	intend	for	this	to	be	a	book	that
covers	every	line	of	code	or	every	implementation	pattern.	I	don’t	want	this	to	be	the	sort	of	book	that
goes	out	of	date	when	a	new	version	of	Laravel	is	released.	Instead,	its	primary	purpose	is	to	provide
developers	with	a	high-level	overview	and	concrete	examples	to	learn	what	they	need	to	get	started,	as
quickly	as	possible.	Rather	than	mirroring	the	docs,	I	want	to	help	you	understand	the	foundational
concepts	behind	Laravel.

Laravel	is	a	powerful	and	flexible	PHP	framework.	It	has	a	thriving	community	and	a	wide	ecosystem
of	tools,	and	as	a	result	it’s	growing	in	appeal	and	reach.	This	book	is	for	developers	who	already
know	how	to	make	websites	and	applications	and	want	to	quickly	learn	how	to	do	so	in	Laravel.

Laravel’s	documentation	is	thorough	and	excellent.	If	you	find	that	I	don’t	cover	any	particular	topic
deeply	enough	for	your	liking,	I	encourage	you	to	visit	the	online	documentation	and	dig	deeper	into
that	particular	topic.

I	think	you	will	find	the	book	a	comfortable	balance	between	high-level	introduction	and	concrete
application,	and	by	the	end	you	should	feel	comfortable	writing	an	entire	application	in	Laravel,	from
scratch.	And,	if	I	did	my	job	well,	you’ll	be	excited	to	try.

http://laravel.com/docs

Who	This	Book	Is	For
This	book	assumes	knowledge	of	basic	object-oriented	programming	practices,	PHP	(or	at	least	the
general	syntax	of	C-family	languages),	and	the	basic	concepts	of	the	Model–View–Controller	(MVC)
pattern	and	templating.	If	you’ve	never	made	a	website	before,	you	may	find	yourself	in	over	your
head.	But	as	long	as	you	have	some	programming	experience,	you	don’t	have	to	know	anything	about
Laravel	before	you	read	this	book	—	we’ll	cover	everything	you	need	to	know,	from	the	simplest
“Hello,	world!”

Laravel	can	run	on	any	operating	system,	but	there	will	be	some	Bash	(shell)	commands	in	the	book
that	are	easiest	to	run	on	Linux/Mac	OS.	Windows	users	may	have	a	harder	time	with	these	commands
and	with	modern	PHP	development,	but	if	you	follow	the	instructions	to	get	Homestead	(a	Linux
virtual	machine)	running,	you’ll	be	able	to	run	all	of	the	commands	from	there.

How	This	Book	Is	Structured
This	book	is	structured	in	what	I	imagine	to	be	a	chronological	order:	if	you’re	building	your	first
web	app	with	Laravel,	the	early	chapters	cover	the	foundational	components	you’ll	need	to	get	started,
and	the	later	chapters	cover	less	foundational	or	more	esoteric	features.

Each	section	of	the	book	can	be	read	on	its	own,	but	for	someone	new	to	the	framework,	I’ve	tried	to
structure	the	chapters	so	that	it’s	actually	very	reasonable	to	start	from	the	beginning	and	read	until
the	end.

Where	applicable,	each	chapter	will	end	with	two	sections:	“Testing”	and	“TL;DR.”	If	you’re	not
familiar,	TL;DR	means	“too	long;	didn’t	read.”	These	final	sections	will	show	you	how	to	write	tests
for	the	features	covered	in	each	chapter	and	give	a	high-level	overview	of	what	was	covered.

The	book	is	written	for	Laravel	5.3,	but	because	Laravel	5.1	is	the	latest	LTS	release,	any	features	that
are	new	in	5.2	or	5.3	will	be	identified.

Conventions	Used	in	This	Book
The	following	typographical	conventions	are	used	in	this	book:

Italic
Indicates	new	terms,	URLs,	email	addresses,	filenames,	and	file	extensions.

Constant	width

Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to	program	elements	such	as
variable	or	function	names,	databases,	data	types,	environment	variables,	statements,	and
keywords.

Constant	width	bold

Shows	commands	or	other	text	that	should	be	typed	literally	by	the	user.

Constant	width	italic

Shows	text	that	should	be	replaced	with	user-supplied	values	or	by	values	determined	by	context.

TIP
This	element	signifies	a	tip	or	suggestion.

NOTE
This	element	signifies	a	general	note.

WARNING
This	element	indicates	a	warning	or	caution.

O’Reilly	Safari
NOTE

Safari	(formerly	Safari	Books	Online)	is	membership-based	training	and	reference	platform	for
enterprise,	government,	educators,	and	individuals.

Members	have	access	to	thousands	of	books,	training	videos,	Learning	Paths,	interactive	tutorials,
and	curated	playlists	from	over	250	publishers,	including	O’Reilly	Media,	Harvard	Business	Review,
Prentice	Hall	Professional,	Addison-Wesley	Professional,	Microsoft	Press,	Sams,	Que,	Peachpit
Press,	Adobe,	Focal	Press,	Cisco	Press,	John	Wiley	&	Sons,	Syngress,	Morgan	Kaufmann,	IBM
Redbooks,	Packt,	Adobe	Press,	FT	Press,	Apress,	Manning,	New	Riders,	McGraw-Hill,	Jones	&
Bartlett,	and	Course	Technology,	among	others.

For	more	information,	please	visit	http://oreilly.com/safari.

http://oreilly.com/safari
http://oreilly.com/safari

How	to	Contact	Us
Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

O’Reilly	Media,	Inc.

1005	Gravenstein	Highway	North

Sebastopol,	CA	95472

800-998-9938	(in	the	United	States	or	Canada)

707-829-0515	(international	or	local)

707-829-0104	(fax)

We	have	a	web	page	for	this	book,	where	we	list	errata,	examples,	and	any	additional	information.
You	can	access	this	page	at	http://bit.ly/laravel-up-and-running.

To	comment	or	ask	technical	questions	about	this	book,	send	email	to	bookquestions@oreilly.com.

For	more	information	about	our	books,	courses,	conferences,	and	news,	see	our	website	at
http://www.oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia

http://bit.ly/laravel-up-and-running
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
This	book	would	not	have	happened	without	the	gracious	support	of	my	amazing	wife	Tereva	or	the
understanding	(“Daddy’s	writing,	buddy!”)	of	my	son	Malachi.	And	while	she	wasn’t	explicitly	aware
of	it,	my	daughter	Mia	was	around	for	almost	the	entire	creation	of	the	book,	so	this	book	is
dedicated	to	the	whole	family.	There	were	many,	many	long	evening	hours	and	weekend	Starbucks
trips	that	took	me	away	from	my	family,	and	I	couldn’t	be	more	grateful	for	their	support	and	also
their	presence	just	making	my	life	awesome.

Additionally,	the	entire	Tighten	Co.	family	has	supported	and	encouraged	me	through	the	writing	of
the	book,	several	even	editing	(Keith	Damiani,	editor	extraordinaire)	and	helping	me	with
challenging	code	samples	(Adam	Wathan,	King	of	the	Collection	Pipeline).	Dan	Sheetz,	my	partner	in
Tighten	crime,	has	been	gracious	enough	to	watch	me	while	away	many	a	work	hour	cranking	on	this
book	and	was	nothing	but	supportive	and	encouraging;	and	Dave	Hicking,	our	operations	manager,
helped	me	arrange	my	schedule	and	work	responsibilities	around	writing	time.

Taylor	Otwell	deserves	thanks	and	honor	for	creating	Laravel	—	and	therefore	creating	so	many	jobs
and	helping	so	many	developers	love	our	lives	that	much	more.	He	deserves	appreciation	for	how
he’s	focused	on	developer	happiness	and	how	hard	he’s	worked	to	have	empathy	for	developers	and
to	build	a	positive	and	encouraging	community.	But	I	also	want	to	thank	him	for	being	a	kind,
encouraging,	and	challenging	friend.	Taylor,	you’re	a	boss.

Thanks	to	Jeffrey	Way,	who	I	still	contend	to	be	one	of	the	best	teachers	on	the	Internet.	He	originally
introduced	me	to	Laravel	and	still	introduces	more	people	every	day.	He’s	also,	unsurprisingly,	a
fantastic	human	being	whom	I’m	glad	to	call	a	friend.

Thank	you	to	Jess	D’Amico,	Shawn	McCool,	Ian	Landsman,	and	Taylor	for	seeing	value	in	me	as	a
conference	speaker	early	on	and	giving	me	a	platform	to	teach	from.	Thanks	to	Dayle	Rees	for
making	it	so	easy	for	so	many	to	learn	Laravel	in	the	early	days.

Thanks	to	every	person	who	put	their	time	and	effort	into	writing	blog	posts	about	Laravel,	especially
early	on:	Eric	Barnes,	Chris	Fidao,	Matt	Machuga,	Jason	Lewis,	Ryan	Tablada,	Dries	Vints,	Maks
Surguy,	and	so	many	more.

And	thanks	to	the	entire	community	of	friends	on	Twitter,	IRC,	and	Slack	who’ve	interacted	with	me
over	the	years.	I	wish	I	could	name	every	name,	but	I	would	miss	some	and	then	feel	awful	about
missing	them.	You	all	are	brilliant,	and	I’m	honored	to	get	to	interact	with	you	on	a	regular	basis.

Thanks	to	my	O’Reilly	editor,	Ally	MacDonald,	and	all	of	my	technical	editors:	Keith	Damiani,
Michael	Dyrynda,	Adam	Fairholm,	and	Myles	Hyson.

And,	of	course,	thanks	to	the	rest	of	my	family	and	friends,	who	supported	me	directly	or	indirectly
through	this	process	—	my	parents	and	siblings,	the	Gainesville	community,	other	business	owners
and	authors,	other	conference	speakers,	and	the	inimitable	DCB.	I	need	to	stop	writing	because	by	the
time	I	run	out	of	space	here	I’ll	be	thanking	my	Starbucks	baristas.

Chapter	1.	Why	Laravel?

In	the	early	days	of	the	dynamic	web,	writing	a	web	application	looked	a	lot	different	than	it	does
today.	Developers	then	were	responsible	for	writing	the	code	for	not	just	the	unique	business	logic	of
our	applications,	but	also	each	of	the	components	that	are	so	common	across	sites	—	user
authentication,	input	validation,	database	access,	templating,	and	more.

Today,	programmers	have	dozens	of	application	development	frameworks	and	thousands	of
components	and	libraries	easily	accessible.	It’s	a	common	refrain	among	programmers	that,	by	the
time	you	learn	one	framework,	three	newer	(and	purportedly	better)	frameworks	have	popped	up
intending	to	replace	it.

“Just	because	it’s	there”	might	be	a	valid	justification	for	climbing	a	mountain,	but	there	are	better
reasons	to	choose	to	use	a	specific	framework	—	or	to	use	a	framework	at	all.	It’s	worth	asking	the
question:	why	frameworks?	More	specifically,	why	Laravel?

Why	Use	a	Framework?
It’s	easy	to	see	why	it’s	beneficial	to	use	the	individual	components,	or	packages,	that	are	available	to
PHP	developers.	With	packages,	someone	else	is	responsible	for	developing	and	maintaining	an
isolated	piece	of	code	that	has	a	well-defined	job,	and	in	theory	that	person	has	a	deeper
understanding	of	this	single	component	than	you	have	time	to	have.

Frameworks	like	Laravel	—	and	Symfony,	Silex,	Lumen,	and	Slim	—	prepackage	a	collection	of
third-party	components	together	with	custom	framework	“glue”	like	configuration	files,	service
providers,	prescribed	directory	structures,	and	application	bootstraps.	So,	the	benefit	of	using	a
framework	in	general	is	that	someone	has	made	decisions	not	just	about	individual	components	for
you,	but	also	about	how	those	components	should	fit	together.

“I’ll	Just	Build	It	Myself”
Let’s	say	you	start	a	new	web	app	without	the	benefit	of	a	framework.	Where	do	you	begin?	Well,	it
should	probably	route	HTTP	requests,	so	you	now	need	to	evaluate	all	of	the	HTTP	request	and
response	libraries	available	and	pick	one.	Then	a	router.	Oh,	and	you’ll	probably	need	to	set	up	some
form	of	routes	configuration	file.	What	syntax	should	it	use?	Where	should	it	go?	What	about
controllers?	Where	do	they	live,	and	how	are	they	loaded?	Well,	you	probably	need	a	dependency
injection	container	to	resolve	the	controllers	and	their	dependencies.	But	which	one?

Furthermore,	what	if	you	do	take	the	time	to	answer	all	those	questions	and	successfully	create	your
application	—	what’s	the	impact	on	the	next	developer?	What	about	when	you	have	four	such	custom-
framework–based	applications,	or	a	dozen,	and	you	have	to	remember	where	the	controllers	live	in
each,	or	what	the	routing	syntax	is?

Consistency	and	Flexibility
Frameworks	address	this	issue	by	providing	a	carefully	considered	answer	to	the	question	“Which
component	should	we	use	here?”	and	ensuring	that	the	particular	components	chosen	work	well
together.	Additionally,	frameworks	provide	conventions	that	reduce	the	amount	of	code	a	developer
new	to	the	project	has	to	understand	—	if	you	understand	how	routing	works	in	one	Laravel	project,
for	example,	you	understand	how	it	works	in	all	Laravel	projects.

When	someone	prescribes	rolling	your	own	framework	for	each	new	project,	what	they’re	really
advocating	is	the	ability	to	control	what	does	and	doesn’t	go	into	your	application’s	foundation.	That
means	the	best	frameworks	will	not	only	provide	you	with	a	solid	foundation,	but	also	give	you	the
freedom	to	customize	to	your	heart’s	content.	And	this,	as	I’ll	show	you	in	the	rest	of	this	book,	is	part
of	what	makes	Laravel	so	special.

A	Short	History	of	Web	and	PHP	Frameworks
An	important	part	of	being	able	to	answer	the	question	“Why	Laravel?”	is	understanding	Laravel’s
history	—	and	understanding	what	came	before	it.	Prior	to	Laravel’s	rise	in	popularity,	there	were	a
variety	of	frameworks	and	other	movements	in	PHP	and	other	web	development	spaces.

Ruby	on	Rails
David	Heinemeier	Hansson	released	the	first	version	of	Ruby	on	Rails	in	2004,	and	it’s	been	hard	to
find	a	web	application	framework	since	then	that	hasn’t	been	influenced	by	Rails	in	some	way.

Rails	popularized	MVC,	RESTful	JSON	APIs,	convention	over	configuration,	ActiveRecord,	and
many	more	tools	and	conventions	that	had	a	profound	influence	on	the	way	web	developers
approached	their	applications	—	especially	with	regard	to	rapid	application	development.

The	Influx	of	PHP	Frameworks
It	was	clear	to	most	developers	that	Rails,	and	similar	web	application	frameworks,	were	the	wave	of
the	future,	and	PHP	frameworks,	including	those	admittedly	imitating	Rails,	starting	popping	up
quickly.

CakePHP	was	the	first	in	2005,	and	it	was	soon	followed	by	Symfony,	CodeIgniter,	Zend	Framework,
and	Kohana	(a	CodeIgniter	fork).	Yii	arrived	in	2008,	and	Aura	and	Slim	in	2010.	2011	brought
FuelPHP	and	Laravel,	both	of	which	were	not	quite	CodeIgniter	offshoots,	but	instead	proposed	as
alternatives.

Some	of	these	frameworks	were	more	Rails-y,	focusing	on	database	object-relational	mappers
(ORMs),	MVC	structures,	and	other	tools	targeting	rapid	development.	Others,	like	Symfony	and
Zend,	focused	more	on	enterprise	design	patterns	and	ecommerce.

The	Good	and	the	Bad	of	CodeIgniter
CakePHP	and	CodeIgniter	were	the	two	early	PHP	frameworks	that	were	most	open	about	how	much
their	inspiration	was	drawn	from	Rails.	CodeIgniter	quickly	rose	to	fame	and	by	2010	was	arguably
the	most	popular	of	the	independent	PHP	frameworks.

CodeIgniter	was	simple,	easy	to	use,	and	boasted	amazing	documentation	and	a	strong	community.
But	its	use	of	modern	technology	and	patterns	advanced	slowly,	and	as	the	framework	world	grew
and	PHP’s	tooling	advanced,	CodeIgniter	started	falling	behind	in	terms	of	both	technological
advances	and	out-of-the-box	features.	Unlike	many	other	frameworks,	CodeIgniter	was	managed	by	a
company,	and	they	were	slow	to	catch	up	with	PHP	5.3’s	newer	features	like	namespaces	and	the
moves	to	GitHub	and	later	Composer.	It	was	in	2010	that	Taylor	Otwell,	Laravel’s	creator,	became
dissatisfied	enough	with	CodeIgniter	that	he	set	off	to	write	his	own	framework.

Laravel	1,	2,	and	3
The	first	beta	of	Laravel	1	was	released	in	June	2011,	and	it	was	written	completely	from	scratch.	It
featured	a	custom	ORM	(Eloquent);	closure-based	routing	(inspired	by	Ruby	Sinatra);	a	module
system	for	extension;	and	helpers	for	forms,	validation,	authentication,	and	more.

Early	Laravel	development	moved	quickly,	and	Laravel	2	and	3	were	released	in	November	2011	and
February	2012,	respectively.	They	introduced	controllers,	unit	testing,	a	command-line	tool,	an
inversion	of	control	(IoC)	container,	Eloquent	relationships,	and	migrations.

Laravel	4
With	Laravel	4,	Taylor	rewrote	the	entire	framework	from	the	ground	up.	By	this	point	Composer,
PHP’s	now-ubiquitous	package	manager,	was	showing	signs	of	becoming	an	industry	standard	and
Taylor	saw	the	value	of	rewriting	the	framework	as	a	collection	of	components,	distributed	and
bundled	together	by	Composer.

Taylor	developed	a	set	of	components	under	the	code	name	Illuminate	and,	in	May	2013,	released
Laravel	4	with	an	entirely	new	structure.	Instead	of	bundling	the	majority	of	its	code	as	a	download,
Laravel	now	pulled	in	the	majority	of	its	components	from	Symfony	(another	framework	that
released	its	components	for	use	by	others)	and	the	Illuminate	components	through	Composer.

Laravel	4	also	introduced	queues,	a	mail	component,	facades,	and	database	seeding.	And	because
Laravel	was	now	relying	on	Symfony	components,	it	was	announced	that	Laravel	would	be	mirroring
(not	exactly,	but	soon	after)	the	six-monthly	release	schedule	Symfony	follows.

Laravel	5
Laravel	4.3	was	scheduled	to	release	in	November	2014,	but	as	development	progressed,	it	became
clear	that	the	significance	of	its	changes	merited	a	major	release,	and	Laravel	5	was	released	in
February	2015.

Laravel	5	featured	a	revamped	directory	structure,	removal	of	the	form	and	HTML	helpers,	the
introduction	of	the	contract	interfaces,	a	spate	of	new	views,	Socialite	for	social	media	authentication,
Elixir	for	asset	compilation,	Scheduler	to	simplify	cron,	dotenv	for	simplified	environment
management,	form	requests,	and	a	brand	new	REPL	(read–evaluate–print	loop).

What’s	So	Special	About	Laravel?
So	what	is	it	that	sets	Laravel	apart?	Why	is	it	worth	having	more	than	one	PHP	framework	at	any
time?	They	all	use	components	from	Symfony	anyway,	right?	Let’s	talk	a	bit	about	what	makes
Laravel	“tick.”

The	Philosophy	of	Laravel
You	only	need	to	read	through	the	Laravel	marketing	materials	and	READMEs	to	start	seeing	its
values.	Taylor	uses	light-related	words	like	“Illuminate”	and	“Spark.”	And	then	there	are	these:
“Artisans.”	“Elegant.”	Also,	these:	“Breath	of	fresh	air.”	“Fresh	start.”	And	finally:	“Rapid.”	“Warp
speed.”

The	two	most	strongly	communicated	values	of	the	framework	are	to	increase	developer	speed	and
developer	happiness.	Taylor	has	described	the	“Artisan”	language	as	intentionally	contrasting	against
more	utilitarian	values.	You	can	see	the	genesis	of	this	sort	of	thinking	in	his	2011	question	on
StackExchange	in	which	he	stated,	“Sometimes	I	spend	ridiculous	amounts	of	time	(hours)	agonizing
over	making	code	look	pretty”	—	just	for	the	sake	of	a	better	experience	of	looking	at	the	code	itself.
And	he’s	often	talked	about	the	value	of	making	it	easier	and	quicker	for	developers	to	take	their
ideas	to	fruition,	getting	rid	of	unnecessary	barriers	to	creating	great	products.

Laravel	is,	at	its	core,	about	equipping	and	enabling	developers.	Its	goal	is	to	provide	clear,	simple,
and	beautiful	code	and	features	that	help	developers	quickly	learn,	start,	and	develop,	and	write	code
that’s	simple,	clear,	and	will	last.

The	concept	of	targeting	developers	is	clear	across	Laravel	materials.	“Happy	developers	make	the
best	code”	is	written	in	the	documentation.	“Developer	happiness	from	download	to	deploy”	was	the
unofficial	slogan	for	a	while.	Of	course,	any	tool	or	framework	will	say	it	wants	developers	to	be
happy.	But	having	developer	happiness	as	a	primary	concern,	rather	than	secondary,	has	had	a	huge
impact	on	Laravel’s	style	and	decision-making	progress.	Where	other	frameworks	may	target
architectural	purity	as	their	primary	goal,	or	compatibility	with	the	goals	and	values	of	enterprise
development	teams,	Laravel’s	primary	focus	is	on	serving	the	individual	developer.

http://bit.ly/2dT5kmS

How	Laravel	Achieves	Developer	Happiness
Just	saying	you	want	to	make	developers	happy	is	one	thing.	Doing	it	is	another,	and	it	requires	you	to
question	what	in	a	framework	is	most	likely	to	make	developers	unhappy	and	what	is	most	likely	to
make	them	happy.	There	are	a	few	ways	Laravel	tries	to	make	developers’	lives	easier.

First,	Laravel	is	a	rapid	application	development	framework.	That	means	it	focuses	on	a	shallow
(easy)	learning	curve	and	on	minimizing	the	steps	between	starting	a	new	app	and	publishing	it.	All	of
the	most	common	tasks	in	building	web	applications,	from	database	interactions	to	authentication	to
queues	to	email	to	caching,	are	made	simpler	by	the	components	Laravel	provides.	But	Laravel’s
components	aren’t	just	great	on	their	own;	they	provide	a	consistent	API	and	predictable	structures
across	the	entire	framework.	That	means	that,	when	you’re	trying	something	new	in	Laravel,	you’re
more	than	likely	going	to	end	up	saying,	“…	and	it	just	works.”

This	doesn’t	end	at	the	framework	itself,	either.	Laravel	provides	an	entire	ecosystem	of	tools	for
building	and	launching	applications.	You	have	Homestead	and	Valet	for	local	development,	Forge	for
server	management,	and	Envoyer	for	advanced	deployment.	And	there’s	a	suite	of	add-on	packages:
Cashier	for	payments	and	subscriptions,	Echo	for	WebSockets,	Scout	for	search,	Passport	for	API
authentication,	Socialite	for	social	login,	and	Spark	to	bootstrap	your	SaaS.	Laravel	is	trying	to	take
the	repetitive	work	out	of	developers’	jobs	so	they	can	do	something	unique.

Next,	Laravel	focuses	on	“convention	over	configuration”	—	meaning	that	if	you’re	willing	to	use
Laravel’s	defaults,	you’ll	have	to	do	much	less	work	than	with	other	frameworks	that	require	you	to
declare	all	of	your	settings	even	if	you’re	using	the	recommended	configuration.	Projects	built	on
Laravel	take	less	time	than	those	built	on	most	other	PHP	frameworks.

Laravel	also	focuses	deeply	on	simplicity.	It’s	possible	to	use	dependency	injection	and	mocking	and
the	Data	Mapper	pattern	and	repositories	and	Command	Query	Responsibility	Segregation	and	all
sorts	of	other	more	complex	architectural	patterns	with	Laravel,	if	you	want.	But	while	other
frameworks	might	suggest	using	those	tools	and	structures	on	every	project,	Laravel	and	its
documentation	and	community	lean	toward	starting	with	the	simplest	possible	implementation	—	a
global	function	here,	a	facade	there,	ActiveRecord	over	there.	This	allows	developers	to	create	the
simplest	possible	application	to	solve	for	their	needs.

An	interesting	source	of	how	Laravel	is	different	is	that	its	creator	and	its	community	are	more
connected	to	and	inspired	by	Ruby	and	Rails	and	functional	programming	languages	than	by	Java.
There’s	a	strong	current	in	modern	PHP	to	lean	toward	verbosity	and	complexity,	embracing	the
more	Java-esque	aspects	of	PHP.	But	Laravel	tends	to	be	on	the	other	side,	embracing	expressive,
dynamic,	and	simple	coding	practices	and	language	features.

The	Laravel	Community
If	this	book	is	your	first	exposure	to	the	Laravel	community,	you	have	something	special	to	look
forward	to.	One	of	the	distinguishing	elements	of	Laravel,	which	has	contributed	to	its	growth	and
success,	is	the	welcoming,	teaching	community	that	surrounds	it.	From	Jeffrey	Way’s	Laracasts	video
tutorials	to	Laravel	News	to	Slack	and	IRC	channels,	from	Twitter	friends	to	bloggers	to	the	Laracon
conferences,	Laravel	has	a	rich	and	vibrant	community	full	of	folks	who’ve	been	around	since	day
one	and	folks	who	are	on	their	own	day	one.	And	this	isn’t	an	accident:

From	the	very	beginning	of	Laravel,	I’ve	had	this	idea	that	all	people	want	to	feel	like	they	are	part
of	something.	It’s	a	natural	human	instinct	to	want	to	belong	and	be	accepted	into	a	group	of	other
like-minded	people.	So,	by	injecting	personality	into	a	web	framework	and	being	really	active	with
the	community,	that	type	of	feeling	can	grow	in	the	community.
Taylor	Otwell,	Product	and	Support	interview

Taylor	understood	from	the	early	days	of	Laravel	that	a	successful	open	source	project	needed	two
things:	good	documentation	and	a	welcoming	community.	And	those	two	things	are	now	hallmarks	of
Laravel.

https://laracasts.com/
https://laravel-news.com/

How	It	Works
Up	until	now,	everything	I’ve	shared	here	has	been	entirely	abstract.	What	about	the	code,	you	ask?
Let’s	dig	into	a	simple	application	(Example	1-1)	so	you	can	see	what	working	with	Laravel	day-to-
day	is	actually	like.

Example	1-1.	“Hello,	World”	in	routes/web.php
//	File:	routes/web.php

<?php

Route::get('/',	function()	{

			return	'Hello,	World!';

});

The	simplest	possible	action	you	can	take	in	a	Laravel	application	is	to	define	a	route	and	return	a
result	any	time	someone	visits	that	route.	If	you	initialize	a	brand	new	Laravel	application	on	your
machine,	define	the	route	in	Example	1-1,	and	then	serve	the	site	from	the	public	directory,	you’ll
have	a	fully	functioning	“Hello,	World”	example	(see	Figure	1-1).

Figure	1-1.	Returning	“Hello,	World!”	with	Laravel

It	looks	very	similar	to	do	the	same	with	controllers,	as	you	can	see	in	Example	1-2.

Example	1-2.	“Hello,	World”	with	controllers
//	File:	routes/web.php

<?php

Route::get('/',	'WelcomeController@index');

//	File:	app/Http/Controllers/WelcomeController.php

<?php

namespace	app\Http\Controllers;

class	WelcomeController

{

				public	function	index()

				{

								return	'Hello,	World!';

				}

}

And	if	we’re	storing	our	greetings	in	the	database,	it’ll	also	look	pretty	similar	(see	Example	1-3).

Example	1-3.	Multigreeting	“Hello,	World”	with	database	access
//	File:	routes/web.php

<?php

Route::get('/',	function()	{

				return	Greeting::first()->body;

});

//	File:	app/Greeting.php

<?php

use	Illuminate\Database\Eloquent\Model;

class	Greeting	extends	Model	{}

//	File:	database/migrations/2015_07_19_010000_create_greetings_table.php

<?php

use	Illuminate\Database\Migrations\Migration;

use	Illuminate\Database\Schema\Blueprint;

class	CreateGreetingsTable	extends	Migration

{

				public	function	up()

				{

								Schema::create('greetings',	function	(Blueprint	$table)	{

												$table->increments('id');

												$table->string('body');

												$table->timestamps();

								});

				}

				public	function	down()

				{

								Schema::drop('greetings');

				}

}

Example	1-3	might	be	a	bit	overwhelming,	and	if	so,	just	skip	over	it.	We’ll	learn	about	everything
that’s	happening	here	in	later	chapters,	but	you	can	already	see	that	with	just	a	few	lines	of	code,
we’ve	set	up	database	migrations	and	models	and	pulled	records	out.	It’s	just	that	simple.

Why	Laravel?
So	—	why	Laravel?

Because	Laravel	helps	you	bring	your	ideas	to	reality	with	no	wasted	code,	using	modern	coding
standards,	surrounded	by	a	vibrant	community,	with	an	empowering	ecosystem	of	tools.

And	because	you,	dear	developer,	deserve	to	be	happy.

Chapter	2.	Setting	Up	a	Laravel	Development
Environment

Part	of	PHP’s	success	has	been	because	it’s	hard	to	find	a	web	server	that	can’t	serve	PHP.	However,
modern	PHP	tools	have	stricter	requirements	than	those	of	the	past.	The	best	way	to	develop	for
Laravel	is	to	ensure	a	consistent	local	and	remote	server	environment	for	your	code,	and	thankfully,
the	Laravel	ecosystem	has	a	few	tools	for	this.

System	Requirements
Everything	we’ll	cover	in	this	chapter	is	possible	with	Windows	machines,	but	you’ll	need	dozens	of
pages	of	custom	instructions	and	caveats.	I’ll	leave	those	instructions	and	caveats	to	actual	Windows
users,	so	the	examples	here	and	in	the	rest	of	the	book	will	focus	on	Unix/Linux/Mac	OS	developers.

Whether	you	choose	to	serve	your	website	by	installing	PHP	and	other	tools	on	your	local	machine,
serve	your	development	environment	from	a	virtual	machine	via	Vagrant,	or	rely	on	a	tool	like
MAMP/WAMP/XAMPP,	your	development	environment	will	need	to	have	all	of	the	following
installed	in	order	to	serve	Laravel	sites:

PHP	>=	5.6.4	for	Laravel	5.3	or	PHP	>=	5.5.9	for	5.1	and	5.2

OpenSSL	PHP	extension

PDO	PHP	extension

Mbstring	PHP	extension

Tokenizer	PHP	extension

Composer
Whatever	machine	you’re	developing	on	will	need	to	have	Composer	installed	globally.	If	you’re	not
familiar	with	Composer,	it’s	a	tool	that’s	at	the	foundation	of	most	modern	PHP	development.
Composer	is	a	dependency	manager	for	PHP,	much	like	NPM	for	Node	or	RubyGems	for	Ruby.
You’ll	need	Composer	to	install	Laravel,	update	Laravel,	and	bring	in	external	dependencies.

https://getcomposer.org/

Local	Development	Environments
For	many	projects,	hosting	your	development	environment	using	a	simpler	tool	set	will	be	enough.	If
you	already	have	MAMP	or	WAMP	or	XAMPP	installed	on	your	system,	that	will	likely	be	fine	to	run
Laravel.	You	can	also	just	run	Laravel	with	PHP’s	built-in	web	server,	assuming	your	system	PHP	is
the	right	version.

All	you	really	need	to	get	started	is	the	ability	to	run	PHP.	Everything	past	that	is	up	to	you.

However,	Laravel	offers	two	tools	for	local	development,	Valet	and	Homestead,	and	we’ll	cover	both
briefly.	If	you’re	unsure	of	which	to	use,	I’d	recommend	using	Valet	and	just	skimming	the
Homestead	section;	however,	both	tools	are	valuable	and	worth	understanding.

Laravel	Valet
If	you	want	to	use	PHP’s	built-in	web	server,	your	simplest	option	is	to	serve	every	site	from	a
localhost	URL.	If	you	run	php	-S	localhost:8000	-t	public	from	your	Laravel	site’s	root	folder,
PHP’s	built-in	web	server	will	serve	your	site	at	http://localhost:8000/.	You	can	also	run	php	artisan
serve	once	you	have	your	application	set	up	to	easily	spin	up	an	equivalent	server.

But	if	you’re	interested	in	tying	each	of	your	sites	to	a	specific	development	domain,	you’ll	need	to
get	comfortable	with	your	operating	system’s	hosts	file	and	use	a	tool	like	dnsmasq.	Let’s	instead	try
something	simpler.

If	you’re	a	Mac	user	(there	are	also	unofficial	forks	for	Windows	and	Linux),	Laravel	Valet	takes
away	the	need	to	connect	your	domains	to	your	application	folders.	Valet	installs	dnsmasq	and	a
series	of	PHP	scripts	that	make	it	possible	to	type	laravel	new	myapp	&&	open	myapp.dev	and	for	it
to	just	work.	You’ll	need	to	install	a	few	tools	using	Homebrew,	which	the	documentation	will	walk
you	through,	but	the	steps	from	initial	installation	to	serving	your	apps	are	few	and	simple.

Install	Valet	(see	the	docs	for	the	latest	installation	instruction	—	it’s	under	very	active	development	at
this	time	of	writing),	and	point	it	at	one	or	more	directories	where	your	sites	will	live.	I	ran	valet
park	from	my	~/Sites	directory,	which	is	where	I	put	all	of	my	under-development	apps.	Now,	you
can	just	add	.dev	to	the	end	of	the	directory	name	and	visit	it	in	your	browser.

Valet	makes	it	easy	to	serve	all	folders	in	a	given	folder	as	“FOLDERNAME.dev”	using	valet	park,
to	serve	just	a	single	folder	using	valet	link,	to	open	the	Valet-served	domain	for	a	folder	using
valet	open,	to	serve	the	Valet	site	with	HTTPS	using	valet	secure,	and	to	open	an	ngrok	tunnel	so
you	can	share	your	site	with	others	with	valet	share.

http://bit.ly/2eNPJ5T
https://laravel.com/docs/valet
https://laravel.com/docs/valet

Laravel	Homestead
Homestead	is	another	tool	you	might	want	to	use	to	set	up	your	local	development	environment.	It’s	a
configuration	tool	that	sits	on	top	of	Vagrant	and	provides	a	pre-configured	virtual	machine	image
that	is	perfectly	set	up	for	Laravel	development,	and	mirrors	the	most	common	production
environment	that	many	Laravel	sites	run	on.

Setting	up	Homestead
If	you	choose	to	use	Homestead,	it’s	going	to	take	a	bit	more	work	to	set	up	than	something	like
MAMP	or	Valet.	The	benefits	are	myriad,	however:	configured	correctly,	your	local	environment	can
be	incredibly	close	to	your	remote	working	environment;	you	won’t	have	to	worry	about	updating
your	dependencies	on	your	local	machine;	and	you	can	learn	all	about	the	structure	of	Ubuntu	servers
from	the	safety	of	your	local	machine.

WHAT	TOOLS	DO	HOMESTEAD	OFFER?

You	can	always	upgrade	the	individual	components	of	your	Homestead	virtual	machine,	but	here	are	a	few	important	tools
Homestead	comes	with	by	default:

To	run	the	server	and	serve	the	site,	Ubuntu,	PHP,	and	Nginx	(a	web	server	similar	to	Apache).

For	database/storage	and	queues,	MySQL,	Postgres,	Redis,	Memcached,	and	beanstalkd.

For	build	steps	and	other	tools,	Node.

Installing	Homestead’s	dependencies
First,	you’ll	need	to	download	and	install	either	VirtualBox	or	VMWare.	VirtualBox	is	most	common
because	it’s	free.

Next,	download	and	install	Vagrant.

Vagrant	is	convenient	because	it	makes	it	easy	for	you	to	create	a	new	local	virtual	machine	from	a
precreated	“box,”	which	is	essentially	a	template	for	a	virtual	machine.	So,	the	next	step	is	to	run
vagrant	box	add	laravel/homestead	from	your	terminal	to	download	the	box.

Installing	Homestead
Next,	let’s	actually	install	Homestead.	You	can	install	multiple	instances	of	Homestead	(perhaps
hosting	a	different	Homestead	box	per	project),	but	I	prefer	a	single	Homestead	virtual	machine	for
all	of	my	projects.	If	you	want	one	per	project,	you’ll	want	to	install	Homestead	in	your	project
directory;	check	the	Homestead	documentation	online	for	instructions.	If	you	want	a	single	virtual
machine	for	all	of	your	projects,	install	Homestead	in	your	user ’s	home	directory	using	the
following	command:

git	clone	https://github.com/laravel/homestead.git	~/Homestead

Now,	run	the	initialization	script	from	wherever	you	put	the	Homestead	directory:

bash	~/Homestead/init.sh

https://www.virtualbox.org/wiki/Downloads
https://www.vagrantup.com/downloads.html
https://laravel.com/docs/5.3/homestead

This	will	place	Homestead’s	primary	configuration	file,	Homestead.yaml,	in	a	new	~/.homestead
directory.

Configuring	Homestead
Open	up	Homestead.yaml	and	configure	it	how	you’d	like.	Here’s	what	it	looks	like	out	of	the	box:

ip:	"192.168.10.10"

memory:	2048

cpus:	1

provider:	virtualbox

authorize:	~/.ssh/id_rsa.pub

keys:

				-	~/.ssh/id_rsa

folders:

				-	map:	~/Code

						to:	/home/vagrant/Code

sites:

				-	map:	homestead.app

						to:	/home/vagrant/Code/Laravel/public

databases:

				-	homestead

#	blackfire:

#					-	id:	foo

#							token:	bar

#							client-id:	foo

#							client-token:	bar

#	ports:

#					-	send:	50000

#							to:	5000

#					-	send:	7777

#							to:	777

#							protocol:	udp

You’ll	need	to	tell	it	your	provider	(likely	virtualbox),	point	it	to	your	public	SSH	key	(by	default
~/.ssh/id_rsa.pub;	if	you	don’t	have	one,	GitHub	has	a	great	tutorial	on	creating	SSH	keys),	map
folders	and	sites	to	their	local	machine	equivalents,	and	provision	a	database.

Mapping	folders	in	Homestead	allows	you	to	edit	files	on	your	local	machine	and	have	those	files
show	up	in	your	Vagrant	box	so	they	can	be	served.	For	example,	if	you	have	a	~/Sites	directory
where	you	put	all	of	your	code,	you’d	map	the	folders	in	Homestead	by	replacing	the	folders	section
in	Homestead.yaml	with	the	following:

folders:

				-	map:	~/Sites

						to:	/home/vagrant/Sites

You’ve	now	just	created	a	directory	in	your	Homestead	virtual	machine	at	/home/vagrant/Sites	that
will	mirror	your	computer ’s	directory	at	~/Sites.

http://bit.ly/2e7Auof

TOP-LEVEL	DOMAINS	FOR	DEVELOPMENT	SITES
You	can	choose	any	convention	for	local	development	sites’	URLs,	but	.app	and	.dev	are	the	most	common.	Homestead
suggests	.app,	so	if	I’m	working	on	a	local	copy	of	symposiumapp.com,	I’ll	develop	at	symposiumapp.app.

Now,	let’s	set	up	our	first	example	website.	Let’s	say	our	live	site	is	going	to	be	projectName.com.	In
Homestead.yaml,	we’ll	map	our	local	development	folder	to	projectName.app,	so	we	have	a	separate
URL	to	visit	for	local	development:

sites:

				-	map:	projectName.app

						to:	/home/vagrant/Sites/projectName/public

As	you	can	see,	we’re	mapping	the	URL	projectName.app	to	the	virtual	machine	directory
/home/vagrant/Sites/projectName/public,	which	is	the	public	folder	within	our	Laravel	install.	We’ll
learn	more	about	that	later.

Finally,	you’re	going	to	need	to	teach	your	local	machine	that,	when	you	try	to	visit	projectName.app,
it	should	look	at	your	computer ’s	local	IP	address	to	resolve	it.	Mac	and	Linux	users	should	edit
/etc/hosts,	and	Windows	users	C:\Windows\System32\drivers\etc\hosts.	Add	a	line	to	this	file	that
looks	like	this:

192.168.10.10		projectName.app

Once	you’ve	provisioned	Homestead,	your	site	will	be	available	to	browse	(on	your	machine)	at
http://projectName.app/.

Creating	databases	in	Homestead
Just	like	you	can	define	a	site	in	Homestead.yaml,	you	can	also	define	a	database.	Databases	are	a	lot
simpler,	because	you’re	only	telling	the	provisioner	to	create	a	database	with	that	name,	nothing	else.
We	do	this	as	follows:

databases:

				-	projectname

Provisioning	Homestead
The	first	time	you	actually	turn	on	a	Homestead	box,	you	need	to	tell	Vagrant	to	initialize	it.	Navigate
to	your	Homestead	directory	and	run	vagrant	up:

cd	~/Homestead

vagrant	up

Your	Homestead	box	is	now	up	and	running;	it’s	mirroring	a	local	folder,	and	it’s	serving	it	to	a	URL
you	can	visit	in	any	browser	on	your	computer.	It	also	has	created	a	MySQL	database.	Now	that	you
have	that	environment	running,	you’re	ready	to	set	up	your	first	Laravel	project	—	but	first,	a	quick
note	about	using	Homestead	day-to-day.

http://projectName.app/

Using	Homestead	day-to-day
It’s	common	to	leave	your	Homestead	virtual	machine	up	and	running	at	all	times,	but	if	you	don’t,	or
if	you	have	recently	restarted	your	computer,	you’ll	need	to	know	how	to	spin	the	box	up	and	down.

Since	Homestead	is	based	on	Vagrant	commands,	you’ll	just	use	basic	Vagrant	commands	for	most
Homestead	actions.	Change	to	the	directory	where	you	installed	Homestead	(using	cd)	and	then	run
the	following	commands	as	needed:

vagrant	up	spins	up	the	Homestead	box.

vagrant	suspend	takes	a	snapshot	of	where	the	box	is	and	then	shuts	it	down;	like	“hibernating”
a	desktop	machine.

vagrant	halt	shuts	the	entire	box	down;	like	turning	off	a	desktop	machine.

vagrant	destroy	deletes	the	entire	box;	like	formatting	a	desktop	machine.

vagrant	provision	re-runs	the	provisioners	on	the	preexisting	box.

Connecting	to	Homestead	databases	from	desktop	applications
If	you	use	a	desktop	application	like	Sequel	Pro,	you’ll	likely	want	to	connect	to	your	Homestead
MySQL	databases	from	your	host	machine.	These	settings	will	get	you	going:

Connection	type:	Standard	(non-SSH)

Host:	127.0.0.1

Username:	homestead

Password:	secret

Port:	33060

Creating	a	New	Laravel	Project
There	are	two	ways	to	create	a	new	Laravel	project,	but	both	are	run	from	the	command	line.	The
first	option	is	to	globally	install	the	Laravel	installer	tool	(using	Composer);	the	second	is	to	use
Composer ’s	create-project	feature.

You	can	learn	about	both	options	in	more	detail	on	the	Installation	documentation	page,	but	I’d
recommend	the	Laravel	installer	tool.

http://laravel.com/docs/installation

Installing	Laravel	with	the	Laravel	Installer	Tool
If	you	have	Composer	installed	globally,	installing	the	Laravel	installer	tool	is	as	simple	as	running
the	following	command:

composer	global	require	"laravel/installer=~1.1"

Once	you	have	the	Laravel	installer	tool	installed,	spinning	up	a	new	Laravel	project	is	simple.	Just
run	this	command	from	your	command	line:

laravel	new	projectName

This	will	create	a	new	subdirectory	of	your	current	directory	named	projectName	and	install	a	bare
Laravel	project	in	it.

Installing	Laravel	with	Composer’s	create-project	Feature
Composer	also	offers	a	feature	called	create-project	for	creating	new	projects	with	a	particular
skeleton.	To	use	this	tool	to	create	a	new	Laravel	project,	issue	the	following	command:

composer	create-project	laravel/laravel	projectName	--prefer-dist

Just	like	the	installer	tool,	this	will	create	a	subdirectory	of	your	current	directory	named
projectName	that	contains	a	skeleton	Laravel	install,	ready	for	you	to	develop.

Laravel’s	Directory	Structure
When	you	open	up	a	directory	that	contains	a	skeleton	Laravel	application,	you’ll	see	the	following
files	and	directories:

app/

bootstrap/

config/

database/

public/

resources/

routes/

storage/

tests/

vendor/

.env

.env.example

.gitattributes

.gitignore

artisan

composer.json

composer.lock

gulpfile.js

package.json

phpunit.xml

readme.md

server.php

Let’s	walk	through	them	one	by	one	to	get	familiar.

The	Folders
The	root	directory	contains	the	following	folders	by	default:

app	is	where	the	bulk	of	your	actual	application	will	go.	Models,	controllers,	route	definitions,
commands,	and	your	PHP	domain	code	all	go	in	here.

bootstrap	contains	the	files	that	the	Laravel	framework	uses	to	boot	every	time	it	runs.

config	is	where	all	the	configuration	files	live.

database	is	where	database	migrations	and	seeds	live.

public	is	the	directory	the	server	points	to	when	it’s	serving	the	website.	This	contains	index.php,
which	is	the	front	controller	that	kicks	off	the	bootstrapping	process	and	routes	all	requests
appropriately.	It’s	also	where	any	public-facing	files	like	images,	stylesheets,	scripts,	or
downloads	go.

resources	is	where	non-PHP	files	that	are	needed	for	other	scripts	live.	Views,	language	files,	and
(optionally)	Sass/LESS	and	source	JavaScript	files	live	here.

routes	is	where	all	of	the	route	definitions	live,	both	for	HTTP	routes	and	“console	routes,”	or
Artisan	commands.

storage	is	where	caches,	logs,	and	compiled	system	files	live.

tests	is	where	unit	and	integration	tests	live.

vendor	is	where	Composer	installs	its	dependencies.	It’s	Git-ignored	(marked	to	be	excluded
from	your	version	control	system),	as	Composer	is	expected	to	run	as	a	part	of	your	deploy
process	on	any	remote	servers.

The	Loose	Files
The	root	directory	also	contains	the	following	files:

.env	and	.env.example	are	the	files	that	dictate	the	environment	variables	(variables	that	are
expected	to	be	different	in	each	environment	and	are	therefore	not	committed	to	version
control).	.env.example	is	a	template	that	each	environment	should	duplicate	to	create	its	own	.env
file,	which	is	Git-ignored.

artisan	is	the	file	that	allows	you	to	run	Artisan	commands	(see	Chapter	7)	from	the	command
line.

.gitignore	and	.gitattributes	are	Git	configuration	files.

composer.json	and	composer.lock	are	the	configuration	files	for	Composer;	composer.json	is
user-editable	and	composer.lock	is	not.	These	files	share	some	basic	information	about	this
project	and	also	define	its	PHP	dependencies.

gulpfile.js	is	the	(optional)	configuration	file	for	Elixir	and	Gulp.	This	is	for	compiling	and
processing	your	frontend	assets.

package.json	is	like	composer.json	but	for	frontend	assets.

phpunit.xml	is	a	configuration	file	for	PHPUnit,	the	tool	Laravel	uses	for	testing	out	of	the	box.

readme.md	is	a	Markdown	file	giving	a	basic	introduction	to	Laravel.

server.php	is	a	backup	server	that	tries	to	allow	less-capable	servers	to	still	preview	the	Laravel
application.

Configuration
The	core	settings	of	your	Laravel	application	—	database	connection,	queue	and	mail	settings,	etc.	—
live	in	files	in	the	config	folder.	Each	of	these	files	returns	an	array,	and	each	value	in	the	array	will
be	accessible	by	a	config	key	that	is	comprised	of	the	filename	and	all	descendant	keys,	separated	by
dots	(.)

So,	if	you	create	a	file	at	config/services.php	that	looks	like	this:

//	config/services.php

return	[

				'sparkpost'	=>	[

								'secret'	=>	'abcdefg'

]

];

you	will	now	have	access	to	that	config	variable	using	config('services.sparkpost.secret').

Any	configuration	variables	that	should	be	distinct	for	each	environment	(and	therefore	not
committed	to	source	control)	will	instead	live	in	your	.env	files.	Let’s	say	you	want	to	use	a	different
Bugsnag	API	key	for	each	environment.	You’d	set	the	config	file	to	pull	it	from	.env:

//	config/services.php

return	[

				'bugsnag'	=>	[

								'api_key'	=>	env('BUGSNAG_API_KEY')

]

];

This	env()	helper	function	pulls	a	value	from	your	.env	file	with	that	same	key.	So	now,	add	that	key
to	your	.env	(settings	for	this	environment)	and	.env.example	(template	for	all	environments)	files:

BUGSNAG_API_KEY=oinfp9813410942

Your	.env	file	already	contains	quite	a	few	environment-specific	variables	needed	by	the	framework,
like	which	mail	driver	you’ll	be	using	and	what	your	basic	database	settings	are.

Up	and	Running
You’re	now	up	and	running	with	a	bare	Laravel	install.	Run	git	init,	commit	the	bare	files	with	git
add	.	and	git	commit,	and	you’re	ready	to	start	coding.	That’s	it!	And	if	you’re	using	Valet,	you	can
run	the	following	commands	and	instantly	see	your	site	live	in	your	browser:

laravel	new	myProject	&&	cd	myProject	&&	valet	open

Every	time	I	start	a	new	project,	these	are	the	steps	I	take:

laravel	new	myProject

cd	myProject

git	init

git	add	.

git	commit	-m	"Initial	commit"

I	keep	all	of	my	sites	in	a	~/Sites	folder,	which	I	have	set	up	as	my	primary	Valet	directory,	so	in	this
case	I’d	instantly	have	myProject.dev	accessible	in	my	browser	with	no	added	work.	I	can	edit	.env	and
point	it	to	a	particular	database,	add	that	database	in	my	MySQL	app,	and	I’m	ready	to	start	coding.

LAMBO
I	perform	the	this	set	of	steps	so	often	that	I	created	a	simple	global	Composer	package	to	do	it	for	me.	It’s	called	Lambo,
and	you	can	learn	more	about	it	on	GitHub.

https://github.com/tightenco/lambo

Testing
In	every	chapter	after	this,	the	“Testing”	section	at	the	end	of	the	chapter	will	show	you	how	to	write
tests	for	the	feature	or	features	that	were	covered.	Since	this	chapter	doesn’t	cover	a	testable	feature,
let’s	talk	tests	quickly.	(To	learn	more	about	writing	and	running	tests	in	Laravel,	head	over	to
Chapter	12.)

Out	of	the	box,	Laravel	brings	in	PHPUnit	as	a	dependency	and	is	configured	to	run	the	tests	in	any
file	in	the	tests	directory	whose	name	ends	with	Test.php	(for	example,	tests/UserTest.php).

So,	the	simplest	way	to	write	tests	is	to	create	a	file	in	the	tests	directory	with	a	name	that	ends	with
Test.php.	And	the	easiest	way	to	run	them	is	to	run	./vendor/bin/phpunit	from	the	command	line	(in
the	project	root).

If	any	tests	require	database	access,	be	sure	to	run	your	tests	from	the	machine	where	your	database	is
hosted	—	so	if	you’re	hosting	your	database	in	Vagrant,	make	sure	to	ssh	into	your	Vagrant	box	to
run	your	tests	from	there.	Again,	you	can	learn	about	this	and	much	more	in	Chapter	12.

TL;DR
Since	Laravel	is	a	PHP	framework,	it’s	very	simple	to	serve	it	locally.	Laravel	also	provides	two	tools
for	managing	your	local	development:	a	simpler	tool	called	Valet	that	uses	your	local	machine	to
provide	your	dependencies,	and	a	preconfigured	Vagrant	setup	named	Homestead.	Laravel	relies	on,
and	can	be	installed	by,	Composer,	and	comes	out	of	the	box	with	a	series	of	folders	and	files	that
reflect	both	its	conventions	and	its	relationship	with	other	open	source	tools.

Chapter	3.	Routing	and	Controllers

The	essential	function	of	any	web	application	framework	is	to	take	requests	from	a	user	and	deliver
responses,	usually	via	HTTP(S).	This	means	defining	an	application’s	routes	is	the	first	and	most
important	project	to	tackle	when	learning	a	web	framework;	without	routes,	you	have	no	ability	to
interact	with	the	end	user.

In	this	chapter	we	will	examine	routes	in	Laravel	and	show	how	to	define	them,	how	to	point	them	to
the	code	they	should	execute,	and	how	to	use	Laravel’s	routing	tools	to	handle	a	diverse	array	of
routing	needs.

Route	Definitions
In	a	Laravel	application,	you	will	define	your	“web”	routes	in	routes/web.php	and	your	“API”	routes
in	routes/api.php.	Web	routes	are	those	that	will	be	visited	by	your	end	users;	API	routes	are	those	for
your	API,	if	you	have	one.	For	now,	we’ll	primarily	focus	on	the	routes	in	routes/web.php.

NOTE
In	projects	running	versions	of	Laravel	prior	to	5.3,	there	will	be	only	one	routes	file,	located	at	app/Http/routes.php.

The	simplest	way	to	define	a	route	is	to	match	a	path	(e.g.,	/)	with	a	closure,	as	seen	in	Example	3-1.

Example	3-1.	Basic	route	definition
//	routes/web.php

Route::get('/',	function	()	{

				return	'Hello,	World!';

});

WHAT’S	A	CLOSURE?

Closures	are	PHP’s	version	of	anonymous	functions.	A	closure	is	a	function	that	you	can	pass	around	as	an	object,	assign	to	a
variable,	pass	as	a	parameter	to	other	functions	and	methods,	or	even	serialize.

You’ve	now	defined	that,	if	anyone	visits	/	(the	root	of	your	domain),	Laravel’s	router	should	run	the
closure	defined	there	and	return	the	result.	Note	that	we	return	our	content	and	don’t	echo	or	print	it.

A	QUICK	INTRODUCTION	TO	MIDDLEWARE
You	might	be	wondering,	“Why	am	I	returning	‘Hello,	World!’	instead	of	echoing	it?”

There	are	quite	a	few	answers,	but	the	simplest	is	that	there	are	a	lot	of	wrappers	around	Laravel’s	request	and	response
cycle,	including	something	called	middleware.	When	your	route	closure	or	controller	method	is	done,	it’s	not	time	to	send
the	output	to	the	browser	yet;	returning	the	content	allows	it	to	continue	flowing	through	the	response	stack	and	the
middleware	before	it	is	returned	back	to	the	user.

Many	simple	websites	could	be	defined	entirely	within	the	web	routes	file.	With	a	few	simple	GET
routes	combined	with	some	templates	as	illustrated	in	Example	3-2,	you	can	can	serve	a	classic
website	easily.

Example	3-2.	Sample	website
Route::get('/',	function	()	{

				return	view('welcome');

});

Route::get('about',	function	()	{

				return	view('about');

});

Route::get('products',	function	()	{

				return	view('products');

});

Route::get('services',	function	()	{

				return	view('services');

});

STATIC	CALLS
If	you	have	much	experience	developing	PHP,	you	might	be	surprised	to	see	static	calls	on	the	Route	class.	This	is	not
actually	a	static	method	per	se,	but	rather	service	location	using	Laravel’s	facades,	which	we’ll	cover	in	Chapter	11.

If	you	prefer	to	avoid	facades,	you	can	accomplish	these	same	definitions	like	this:

$router->get('/',	function	()	{

				return	'Hello,	World!';

});

HTTP	METHODS

If	you’re	not	familiar	with	the	idea	of	HTTP	methods,	read	on	in	this	chapter	for	more	information,	but	for	now,	just	know	that	every
HTTP	request	has	a	“verb,”	or	action,	along	with	it.	Laravel	allows	you	to	define	your	routes	based	on	which	verb	was	used;	the
most	common	are	GET	and	POST,	followed	by	PUT,	DELETE,	and	PATCH.	Each	method	communicates	a	different	thing	to	the	server,
and	to	your	code,	about	the	intentions	of	the	caller.

Route	Verbs
You	might’ve	noticed	that	we’ve	been	using	Route::get	in	our	route	definitions.	This	means	we’re
telling	Laravel	to	only	match	for	these	routes	when	the	HTTP	request	uses	the	GET	action.	But	what	if
it’s	a	form	POST,	or	maybe	some	JavaScript	sending	PUT	or	DELETE	requests?	There	are	a	few	other
options	for	methods	to	call	on	a	route	definition,	as	illustrated	in	Example	3-3.

Example	3-3.	Route	verbs
Route::get('/',	function	()	{

				return	'Hello,	World!';

});

Route::post('/',	function	()	{});

Route::put('/',	function	()	{});

Route::delete('/',	function	()	{});

Route::any('/',	function	()	{});

Route::match(['get',	'post'],	'/',	function	()	{});

Route	Handling
As	you’ve	probably	guessed,	passing	a	closure	to	the	route	definition	is	not	the	only	way	to	teach	it
how	to	resolve	a	route.	Closures	are	quick	and	simple,	but	the	larger	your	application	gets,	the
clumsier	it	becomes	to	put	all	of	your	routing	logic	in	one	file.	Additionally,	applications	using	route
closures	can’t	take	advantage	of	Laravel’s	route	caching	(more	on	that	later),	which	can	shave	up	to
hundreds	of	milliseconds	off	of	each	request.

The	other	common	option	is	to	pass	a	controller	name	and	method	as	a	string	in	place	of	the	closure,
as	in	Example	3-4.

Example	3-4.	Routes	calling	controller	methods
Route::get('/',	'WelcomeController@index');

This	is	telling	Laravel	to	pass	requests	to	that	path	to	the	index()	method	of	the
App\Http\Controllers\WelcomeController	controller.	This	method	will	be	passed	the	same
parameters	and	treated	the	same	way	as	a	closure	you	might’ve	alternatively	put	in	its	place.

Route	Parameters
If	the	route	you’re	defining	has	parameters	—	segments	in	the	URL	structure	that	are	variable	—	it’s
simple	to	define	them	in	your	route	and	pass	them	to	your	closure	(see	Example	3-5).

Example	3-5.	Route	parameters
Route::get('users/{id}/friends',	function	($id)	{

				//

});

THE	NAMING	RELATIONSHIP	BETWEEN	ROUTE	PARAMETERS	
AND	CLOSURE/CONTROLLER 	METHOD	PARAMETERS

As	you	can	see	in	Example	3-5,	it’s	most	common	to	use	the	same	names	for	your	route	parameters	({id})	and	the	method
parameters	they	inject	into	your	route	definition	(function	($id)).	But	is	this	necessary?

Unless	you’re	using	route/model	binding,	no.	The	only	thing	that	defines	which	route	parameter	matches	with	which	method
parameter	is	their	order	(left	to	right),	as	you	can	see	here:

Route::get('users/{userId}/comments/{commentId}',	function	(

				$thisIsActuallyTheRouteId,

				$thisisReallyTheCommentId

)	{

				//

});

That	having	been	said,	just	because	you	can	make	them	different	doesn’t	mean	you	should.	I	recommend	keeping	them	the	same	for
the	sake	of	future	developers,	who	could	get	tripped	up	by	inconsistent	naming.

You	can	also	make	your	route	parameters	optional	by	including	a	question	mark	(?)	after	the
parameter	name,	as	illustrated	in	Example	3-6.	In	this	case,	you	should	also	provide	a	default	value
for	the	route’s	corresponding	variable.

Example	3-6.	Optional	route	parameters
Route::get('users/{id?}',	function	($id	=	'fallbackId')	{

				//

});

And	you	can	use	regular	expressions	(regexes)	to	define	that	a	route	should	only	match	if	a	parameter
meets	particular	requirements,	as	in	Example	3-7.

Example	3-7.	Regular	expression	route	constraints
Route::get('users/{id}',	function	($id)	{

				//

})->where('id',	'[0-9]+');

Route::get('users/{username}',	function	($username)	{

				//

})->where('username',	'[A-Za-z]+');

Route::get('posts/{id}/{slug}',	function	($id,	$slug)	{

				//

})->where(['id'	=>	'[0-9]+',	'slug'	=>	'[A-Za-z]+']);

As	you’ve	probably	guessed,	if	you	visit	a	path	that	matches	a	route	string,	but	the	regex	doesn’t
match	the	parameter,	it	won’t	be	matched.	Since	routes	are	matched	top	to	bottom,	users/abc	would
skip	the	first	closure	in	Example	3-7,	but	it	would	be	matched	by	the	second	closure,	so	it	would	get
routed	there.	On	the	other	hand,	posts/abc/123	wouldn’t	match	any	of	the	closures,	so	it	would	return
a	404	Not	Found	error.

Route	Names
The	simplest	way	to	refer	to	these	routes	elsewhere	in	your	application	is	just	by	their	path.	There’s	a
url()	helper	to	simplify	that	linking	in	your	views,	if	you	need	it;	see	Example	3-8	for	an	example.
The	helper	will	prefix	your	route	with	the	full	domain	of	your	site.

Example	3-8.	URL	helper
<a	href="<?php	echo	url('/');	?>">

//	outputs	

However,	Laravel	also	allows	you	to	name	each	route,	which	enables	you	to	refer	to	it	without
explicitly	referencing	the	URL.	This	is	helpful	because	it	means	you	can	give	simple	nicknames	to
complex	routes,	and	also	because	linking	them	by	name	means	you	don’t	have	to	rewrite	your
frontend	links	if	the	paths	change	(see	Example	3-9).

Example	3-9.	Defining	route	names
//	Defining	a	route	with	name	in	routes/web.php:

Route::get('members/{id}',	'MembersController@show')->name('members.show');

//	Link	the	route	in	a	view	using	the	route()	helper

<a	href="<?php	echo	route('members.show',	['id'	=>	14]);	?>">

This	example	illustrates	a	few	new	concepts.	First,	we’re	using	fluent	route	definition	to	add	the	name,
by	chaining	the	name()	method	after	the	get()	method.	This	method	allows	us	to	name	the	route,
giving	it	a	short	alias	to	make	it	easier	to	reference	elsewhere.

DEFINING	CUSTOM	ROUTES	IN	LARAVEL	5.1
Fluent	route	definitions	don’t	exist	in	Laravel	5.1.	You’ll	need	to	instead	pass	an	array	to	the	second	parameter	of	your	route
definition;	check	the	Laravel	docs	to	see	more	about	how	this	works.	Here’s	Example	3-9	in	Laravel	5.1:

Route::get('members/{id}',	[

				'as'	=>	'members.show',

				'uses'	=>	'MembersController@show'

]);

In	our	example,	we’ve	named	this	route	members.show;	resourcePlural.action	is	a	common
convention	within	Laravel	for	route	and	view	names.

ROUTE	NAMING	CONVENTIONS

You	can	name	your	route	anything	you’d	like,	but	the	common	convention	is	to	use	the	plural	of	the	resource	name,	then	a	period,
then	the	action.	So,	here	are	the	routes	most	common	for	a	resource	named	photo:

photos.index

photos.create

photos.store

photos.show

photos.edit

photos.update

photos.destroy

To	learn	more	about	these	conventions,	see	“Resource	Controllers”.

We	also	introduced	the	route()	helper.	Just	like	url(),	it’s	intended	to	be	used	in	views	to	simplify
linking	to	a	named	route.	If	the	route	has	no	parameters,	you	can	simply	pass	the	route	name:
(route('members.index'))	and	receive	a	route	string	http://myapp.com/members/index).	If	it	has
parameters,	pass	them	in	as	an	array	as	the	second	parameter	like	we	did	in	this	example.

In	general,	I	recommend	using	route	names	instead	of	paths	to	refer	to	your	routes,	and	therefore
using	the	route()	helper	instead	of	the	url()	helper.	Sometimes	it	can	get	a	bit	clumsy	—	for
example,	if	you’re	working	with	multiple	subdomains	—	but	it	provides	an	incredible	level	of
flexibility	to	later	change	the	application’s	routing	structure	without	major	penalty.

PASSING	ROUTE	PARAMETERS	TO	THE	ROUTE() 	HELPER

When	your	route	has	parameters	(e.g.,	users/{id}),	you	need	to	define	those	parameters	when	you’re	using	the	route()	helper	to
generate	a	link	to	the	route.

There	are	a	few	different	ways	to	pass	these	parameters.	Let’s	imagine	a	route	defined	as	users/{userId}/comments/{commentId}.
If	the	user	ID	is	1	and	the	comment	ID	is	2,	let’s	look	at	a	few	options	we	have	available	to	us:

Option	1:

route('users.comments.show',	[1,	2])

//	http://myapp.com/users/1/comments/2

Option	2:

route('users.comments.show',	['userId'	=>	1,	'commentId'	=>	2])

//	http://myapp.com/users/1/comments/2

